Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.694
Filtrar
1.
J Agric Food Chem ; 72(15): 8618-8631, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569082

RESUMO

Daidzein (DAN) is an isoflavone, and it is often found in its natural form in soybean and food supplements. DAN has poor bioavailability owing to its extremely low water solubility and first-pass metabolism. Herein, we hypothesized that a bioactivatable natural amino acid-bearing carbamate prodrug strategy could increase the water solubility and metabolic stability of DAN. To test our hypothesis, nine amino acid prodrugs of DAN were designed and synthesized. Compared with DAN, the optimal prodrug (daidzein-4'-O-CO-N-isoleucine, D-4'-I) demonstrated enhanced water solubility and improved phase II metabolic stability and activation to DAN in plasma. In addition, unlike the passive transport of DAN, D-4'-I maintained high permeability via organic anion-transporting polypeptide 2B1 (OATP2B1)-mediated transport. Importantly, D-4'-I increased the oral bioavailability by 15.5-fold, reduced the gender difference, and extended the linear absorption capacity in the pharmacokinetics of DAN in rats. Furthermore, D-4'-I exhibited dose-dependent protection against liver injury. Thus, the natural amino acid-bearing carbamate prodrug strategy shows potential in increasing water solubility and improving phase II metabolic stability to enhance the oral bioavailability of DAN.


Assuntos
Isoflavonas , Pró-Fármacos , Ratos , Animais , Aminoácidos/química , Disponibilidade Biológica , Solubilidade , Pró-Fármacos/química , Carbamatos/química , Água , Administração Oral
2.
PLoS One ; 19(3): e0297870, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527060

RESUMO

The best biocontroller Bacillus subtilis produced silver nanoparticles (AgNPs) with a spherical form and a 62 nm size through green synthesis. Using UV-vis spectroscopy, PSA, and zeta potential analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy, the properties of synthesized silver nanoparticles were determined. Silver nanoparticles were tested for their antifungicidal efficacy against the most virulent isolate of the Aspergillus flavus fungus, JAM-JKB-BHA-GG20, and among the 10 different treatments, the treatment T6 [PDA + 1 ml of NP (19: 1)] + Pathogen was shown to be extremely significant (82.53%). TG-51 and GG-22 were found to be the most sensitive groundnut varieties after 5 and 10 days of LC-MS QTOF infection when 25 different groundnut varieties were screened using the most toxic Aspergillus flavus isolate JAM- JKB-BHA-GG20, respectively. In this research, the most susceptible groundnut cultivar, designated GG-22, was tested. Because less aflatoxin (1651.15 g.kg-1) was observed, treatment T8 (Seed + Pathogen + 2 ml silver nanoparticles) was determined to be much more effective. The treated samples were examined by Inductively Coupled Plasma Mass Spectrometry for the detection of metal ions and the fungicide carbendazim. Ag particles (0.8 g/g-1) and the fungicide carbendazim (0.025 g/g-1) were found during Inductively Coupled Plasma Mass Spectrometry analysis below detectable levels. To protect plants against the invasion of fungal pathogens, environmentally friendly green silver nanoparticle antagonists with antifungal properties were able to prevent the synthesis of mycotoxin by up to 82.53%.


Assuntos
Benzimidazóis , Carbamatos , Fungicidas Industriais , Nanopartículas Metálicas , Antifúngicos/farmacologia , Aspergillus flavus , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Aspergillus , Bactérias , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/química , Testes de Sensibilidade Microbiana
3.
Cell Death Dis ; 15(3): 183, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429301

RESUMO

Metastatic BRAFV600E colorectal cancer (CRC) carries an extremely poor prognosis and is in urgent need of effective new treatments. While the BRAFV600E inhibitor encorafenib in combination with the EGFR inhibitor cetuximab (Enc+Cet) was recently approved for this indication, overall survival is only increased by 3.6 months and objective responses are observed in only 20% of patients. We have found that a limitation of Enc+Cet treatment is the failure to efficiently induce apoptosis in BRAFV600E CRCs, despite inducing expression of the pro-apoptotic protein BIM and repressing expression of the pro-survival protein MCL-1. Here, we show that BRAFV600E CRCs express high basal levels of the pro-survival proteins MCL-1 and BCL-XL, and that combining encorafenib with a BCL-XL inhibitor significantly enhances apoptosis in BRAFV600E CRC cell lines. This effect was partially dependent on the induction of BIM, as BIM deletion markedly attenuated BRAF plus BCL-XL inhibitor-induced apoptosis. As thrombocytopenia is an established on-target toxicity of BCL-XL inhibition, we also examined the effect of combining encorafenib with the BCL-XL -targeting PROTAC DT2216, and the novel BCL-2/BCL-XL inhibitor dendrimer conjugate AZD0466. Combining encorafenib with DT2216 significantly increased apoptosis induction in vitro, while combining encorafenib with AZD0466 was well tolerated in mice and further reduced growth of BRAFV600E CRC xenografts compared to either agent alone. Collectively, these findings demonstrate that combined BRAF and BCL-XL inhibition significantly enhances apoptosis in pre-clinical models of BRAFV600E CRC and is a combination regimen worthy of clinical investigation to improve outcomes for these patients.


Assuntos
Antineoplásicos , Apoptose , Carbamatos , Neoplasias Colorretais , Inibidores de Proteínas Quinases , Proteína bcl-X , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Apoptose/efeitos dos fármacos
4.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542855

RESUMO

Benzimidazole fungicides are a class of highly effective, low-toxicity, systemic broad-spectrum fungicides developed in the 1960s and 1970s, based on the fungicidal activity of the benzimidazole ring structure. They exhibit biological activities including anticancer, antibacterial, and antiparasitic effects. Due to their particularly outstanding antibacterial properties, they are widely used in agriculture to prevent and control various plant diseases caused by fungi. The main products of benzimidazole fungicides include benomyl, carbendazim, thiabendazole, albendazole, thiophanate, thiophanate-methyl, fuberidazole, methyl (1-{[(5-cyanopentyl)amino]carbonyl}-1H-benzimidazol-2-yl) carbamate, and carbendazim salicylate. This article mainly reviews the physicochemical properties, toxicological properties, disease control efficacy, and pesticide residue and detection technologies of the aforementioned nine benzimidazole fungicides and their main metabolite (2-aminobenzimidazole). On this basis, a brief outlook on the future research directions of benzimidazole fungicides is presented.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Benzimidazóis/farmacologia , Benzimidazóis/metabolismo , Carbamatos/farmacologia , Tiofanato , Antibacterianos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38522711

RESUMO

Carbendazim is a widely used fungicide to protect agricultural and horticultural crops against a wide array of fungal species. Published reports have shown that the wide usage of carbendazim resulted in reprotoxicity, carcinogenicity, immunotoxicity, and developmental toxicity in mammalian models. However, studies related to the developmental toxicity of carbendazim in aquatic organisms are not clear. To address this gap, an attempt was made by exposing zebrafish embryos to carbendazim (800 µg/L) and assessing the phenotypic and transcriptomic profile at different developmental stages [24 hour post fertilization (hpf), 48 hpf, 72 hpf and 96 hpf). At 48 hpf, phenotypic abnormalities such as delay in hatching rate, deformed spinal axial curvature, and pericardial edema were observed in zebrafish larvae over its respective controls. At 72 hpf, exposure of zebrafish embryos exposed to carbendazim resulted in scoliosis; however, unexposed larvae did not exhibit signs of scoliosis. Interestingly, the transcriptomic analysis revealed a total of 1253 DEGs were observed at selected time points, while unique genes at 24 hpf, 48 hpf, 72 hpf and 96 hpf was found to be 76.54 %, 61.14 %, 92.98 %, and 68.28 %, respectively. Functional profiling of downregulated genes revealed altered transcriptomic markers associated with phototransduction (24 hpf and 72 hpf), immune system (48 hpf), and SNARE interactions in the vesicular pathway (96 hpf). Whereas functional profiling of upregulated genes revealed altered transcriptomic markers associated with riboflavin metabolism (24 hpf), basal transcription factors (48 hpf), insulin signaling pathway (72 hpf), and primary bile acid biosynthesis (96 hpf). Taken together, carbendazim-induced developmental toxicity could be ascribed to pleiotropic responses at the molecular level, which in turn might reflect phenotypic abnormalities.


Assuntos
Benzimidazóis , Carbamatos , Escoliose , Poluentes Químicos da Água , Animais , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Larva , Escoliose/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
EMBO Mol Med ; 16(4): 870-884, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462666

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare inherited skin disease characterized by defects in type VII collagen leading to a range of fibrotic pathologies resulting from skin fragility, aberrant wound healing, and altered dermal fibroblast physiology. Using a novel in vitro model of fibrosis based on endogenously produced extracellular matrix, we screened an FDA-approved compound library and identified antivirals as a class of drug not previously associated with anti-fibrotic action. Preclinical validation of our lead hit, daclatasvir, in a mouse model of RDEB demonstrated significant improvement in fibrosis as well as overall quality of life with increased survival, weight gain and activity, and a decrease in pruritus-induced hair loss. Immunohistochemical assessment of daclatasvir-treated RDEB mouse skin showed a reduction in fibrotic markers, which was supported by in vitro data demonstrating TGFß pathway targeting and a reduction of total collagen retained in the extracellular matrix. Our data support the clinical development of antivirals for the treatment of patients with RDEB and potentially other fibrotic diseases.


Assuntos
Carbamatos , Epidermólise Bolhosa Distrófica , Imidazóis , Pirrolidinas , Valina/análogos & derivados , Humanos , Animais , Camundongos , Epidermólise Bolhosa Distrófica/tratamento farmacológico , Epidermólise Bolhosa Distrófica/patologia , Qualidade de Vida , Colágeno Tipo VII/metabolismo , Colágeno Tipo VII/uso terapêutico , Fibrose , Antivirais/farmacologia , Antivirais/uso terapêutico , Pele/metabolismo , Pele/patologia
7.
Chemosphere ; 355: 141744, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522669

RESUMO

Pesticides pollute natural water reservoirs through persistent accumulation. Therefore, their toxicity and degradability are serious issues. Carbendazim (CBZ) is a pesticide used against fungal infections in agricultural crops, and its overexploitation detrimentally affects aquatic ecosystems and organisms. It is necessary to design a logical, efficient, and field-deployable method for monitoring the amount of CBZ in environmental samples. Herein, a nano-engineered bismuth selenide (Bi2Se3)/functionalized carbon nanofiber (f-CNF) nanocomposite was utilized as an electrocatalyst to fabricate an electrochemical sensing platform for CBZ. Bi2Se3/f-CNF exhibited a substantial electroactive surface area, high electrocatalytic activity, and high conductivity owing to the synergistic interaction of Bi2Se3 with f-CNF. The structural chemical compositions and morphology of the Bi2Se3/f-CNF nanocomposite were confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Electrochemical analysis was carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The voltammetry and impedance experiments exposed that the Bi2Se3/f-CNF-modified GCE has attained adequate electrocatalytic function with amended features of electron transportation (Rct = 35.93 Ω) and improved reaction sites (0.082 cm2) accessible by CBZ moiety along with exemplary electrochemical stability (98.92%). The Bi2Se3/f-CNF nanocomposite exhibited higher sensitivity of 0.2974 µA µM-1cm-2 and a remarkably low limit of detection (LOD) of 1.04 nM at a broad linera range 0.001-100 µM. The practicability of the nanocomposite was tested in environmental (tap and pond water) samples, which supports excellent signal amplification with satisfactory recoveries. Hence, the Bi2Se3/f-CNF nanocomposite is a promising electrode modifier for detecting CBZ.


Assuntos
Benzimidazóis , Bismuto , Carbamatos , Carbono , Nanofibras , Compostos de Selênio , Carbono/química , Nanofibras/química , Ecossistema , Água , Técnicas Eletroquímicas/métodos , Eletrodos
8.
Org Biomol Chem ; 22(15): 2992-3000, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38526322

RESUMO

The employment of antibodies as a targeted drug delivery vehicle has proven successful which is exemplified by the emergence of antibody-drug conjugates (ADCs). However, ADCs are not without their shortcomings. Improvements may be made to the ADC platform by decoupling the cytotoxic drug from the delivery vehicle and conjugating an organometallic catalyst in its place. The resulting protein-metal catalyst conjugate was designed to uncage the masked cytotoxin administered as a separate entity. Macropinocytosis of albumin by cancerous cells suggests the potential of albumin acting as the tumor-targeting delivery vehicle. Herein reported are the first preparation and demonstration of ruthenium catalysts with cyclopentadienyl and quinoline-based ligands conjugated to albumin. The effective uncaging abilities were demonstrated on allyloxy carbamate (alloc)-protected rhodamine 110 and doxorubicin, providing a promising catalytic scaffold for the advancement of selective drug delivery methods in the future.


Assuntos
Antineoplásicos , Imunoconjugados , Rutênio , Carbamatos , Antineoplásicos/farmacologia , Albuminas
10.
Toxicol In Vitro ; 97: 105812, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522494

RESUMO

Carbendazim (CBZ) is a benzimidazole fungicide widely used worldwide in industrial, agricultural, and veterinary practices. Although, CBZ was found in all brain tissues causing serious neurotoxicity, its impact on brain immune cells remain scarcely understood. Our study investigated the in vitro effects of CBZ on activated microglial BV-2 cells. Lipopolysaccharide (LPS)-stimulated BV-2 cells were exposed to increasing concentrations of CBZ and cytokine release was measured by ELISA, and Cytometric Bead Array (CBA) assays. Mitochondrial superoxide anion (O2·-) generation was evaluated by Dihydroethidium (DHE) and nitric oxide (NO) was assessed by Griess reagent. Lipid peroxidation was evaluated by measuring the malonaldehyde (MDA) levels. The transmembrane mitochondrial potential (ΔΨm) was detected by cytometry analysis with dihexyloxacarbocyanine iodide (DiOC6(3)) assay. CBZ concentration-dependently increased IL-1ß, IL-6, TNF-α and MCP-1 by LPS-activated BV-2 cells. CBZ significantly promoted oxidative stress by increasing NO, O2·- generation, and MDA levels. In contrast, CBZ significantly decreased ΔΨm. Pre-treatment of BV-2 cells with N-acetylcysteine (NAC) reversed all the above mentioned immunotoxic parameters, suggesting a potential protective role of NAC against CBZ-induced immunotoxicity via its antioxidant and anti-inflammatory effects on activated BV-2 cells. Therefore, microglial proinflammatory over-activation by CBZ may be a potential mechanism by which CBZ could induce neurotoxicity and neurodegenerative disorders.


Assuntos
Acetilcisteína , Carbamatos , Microglia , Acetilcisteína/farmacologia , Lipopolissacarídeos/toxicidade , Benzimidazóis/toxicidade , Óxido Nítrico
11.
Arh Hig Rada Toksikol ; 75(1): 81-84, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548379

RESUMO

Organophosphorus poisoning is a critical condition that can cause central nervous system depression, respiratory failure, and death early on. As its clinical manifestations closely resemble those of carbamate pesticide poisoning, the aim of this case study is to present a case of misdiagnosis, initially identifying carbofuran poisoning as organophosphate in a patient suspect of a heatstroke. We also present a case of intentional self-poisoning with organophosphate dichlorvos to underline the likelihood of pesticide poisoning in patients exhibiting acute cholinergic symptoms when the ingested substance is not known. In such cases, empirical treatment with atropine and oxime can be started pending timely differential diagnosis to adjust treatment as necessary.


Assuntos
Inseticidas , Intoxicação por Organofosfatos , Praguicidas , Intoxicação , Humanos , Carbamatos/uso terapêutico , Intoxicação por Organofosfatos/diagnóstico , Intoxicação por Organofosfatos/tratamento farmacológico , Diclorvós/uso terapêutico , Intoxicação/terapia
12.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38426326

RESUMO

Herbs applicability in disease treatment has been verified through experiences over thousands of years. The understanding of herb-disease associations (HDAs) is yet far from complete due to the complicated mechanism inherent in multi-target and multi-component (MTMC) botanical therapeutics. Most of the existing prediction models fail to incorporate the MTMC mechanism. To overcome this problem, we propose a novel dual-channel hypergraph convolutional network, namely HGHDA, for HDA prediction. Technically, HGHDA first adopts an autoencoder to project components and target protein onto a low-dimensional latent space so as to obtain their embeddings by preserving similarity characteristics in their original feature spaces. To model the high-order relations between herbs and their components, we design a channel in HGHDA to encode a hypergraph that describes the high-order patterns of herb-component relations via hypergraph convolution. The other channel in HGHDA is also established in the same way to model the high-order relations between diseases and target proteins. The embeddings of drugs and diseases are then aggregated through our dual-channel network to obtain the prediction results with a scoring function. To evaluate the performance of HGHDA, a series of extensive experiments have been conducted on two benchmark datasets, and the results demonstrate the superiority of HGHDA over the state-of-the-art algorithms proposed for HDA prediction. Besides, our case study on Chuan Xiong and Astragalus membranaceus is a strong indicator to verify the effectiveness of HGHDA, as seven and eight out of the top 10 diseases predicted by HGHDA for Chuan-Xiong and Astragalus-membranaceus, respectively, have been reported in literature.


Assuntos
Algoritmos , Astragalus propinquus , Benchmarking , Carbamatos
13.
BMC Neurosci ; 25(1): 18, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491350

RESUMO

Sensory processing in the auditory brainstem can be studied with auditory brainstem responses (ABRs) across species. There is, however, a limited understanding of ABRs as tools to assess the effect of pharmacological interventions. Therefore, we set out to understand how pharmacological agents that target key transmitter systems of the auditory brainstem circuitry affect ABRs in rats. Given previous studies, demonstrating that Nrxn1α KO Sprague Dawley rats show substantial auditory processing deficits and altered sensitivity to GABAergic modulators, we used both Nrxn1α KO and wild-type littermates in our study. First, we probed how different commonly used anesthetics (isoflurane, ketamine/xylazine, medetomidine) affect ABRs. In the next step, we assessed the effects of different pharmacological compounds (diazepam, gaboxadol, retigabine, nicotine, baclofen, and bitopertin) either under isoflurane or medetomidine anesthesia. We found that under our experimental conditions, ABRs are largely unaffected by diverse pharmacological modulation. Significant modulation was observed with (i) nicotine, affecting the late ABRs components at 90 dB stimulus intensity under isoflurane anesthesia in both genotypes and (ii) retigabine, showing a slight decrease in late ABRs deflections at 80 dB stimulus intensity, mainly in isoflurane anesthetized Nrxn1α KO rats. Our study suggests that ABRs in anesthetized rats are resistant to a wide range of pharmacological modulators, which has important implications for the applicability of ABRs to study auditory brainstem physiology.


Assuntos
Carbamatos , Isoflurano , Fenilenodiaminas , Ratos , Animais , Isoflurano/farmacologia , Potenciais Evocados Auditivos do Tronco Encefálico , Ratos Sprague-Dawley , Medetomidina/farmacologia , Nicotina/farmacologia
14.
Drugs Aging ; 41(3): 251-260, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38446341

RESUMO

BACKGROUND: Cenobamate is an antiseizure medication (ASM) approved in the US and Europe for the treatment of uncontrolled focal seizures. OBJECTIVE: This post hoc analysis of a phase III, open-label safety study assessed the safety and efficacy of adjunctive cenobamate in older adults versus the overall study population. METHODS: Adults aged 18-70 years with uncontrolled focal seizures taking stable doses of one to three ASMs were enrolled in the phase III, open-label safety study; adults aged 65-70 years from that study were included in our safety analysis. Discontinuations due to adverse events and treatment-emergent adverse events (TEAEs) were assessed throughout the study in all patients who received one or more doses of cenobamate (safety study population). Efficacy was assessed post hoc in patients who had adequate seizure data available (post hoc efficacy population); we assessed patients aged 65-70 years from that population. Overall, 100% responder rates were assessed in the post hoc efficacy maintenance-phase population in 3-month intervals. Concomitant ASM drug load changes were also measured. For each ASM, drug load was defined as the ratio of actual drug dose/day to the World Health Organization defined daily dose (DDD). RESULTS: Of 1340 patients (mean age 39.7 years) in the safety study population, 42 were ≥ 65 years of age (mean age 67.0 years, 52.4% female). Median duration of exposure was 36.1 and 36.9 months for overall patients and older patients, respectively, and mean epilepsy duration was 22.9 and 38.5 years, respectively. At 1, 2, and 3 years, 80%, 72%, and 68% of patients overall, and 76%, 71%, and 69% of older patients, respectively, remained on cenobamate. Common TEAEs (≥ 20%) were somnolence and dizziness in overall patients, and somnolence, dizziness, fall, fatigue, balance disorder, and upper respiratory tract infection in older patients. Falls in older patients occurred after a mean 452.1 days of adjunctive cenobamate treatment (mean dose 262.5 mg/day; mean concomitant ASM drug load 2.46). Of 240 patients in the post hoc efficacy population, 18 were ≥ 65 years of age. Mean seizure frequency at baseline was 18.1 seizures/28 days for the efficacy population and 3.1 seizures/28 days for older patients. Rates of 100% seizure reduction within 3-month intervals during the maintenance phase increased over time for the overall population (n = 214) and older adults (n = 15), reaching 51.9% and 78.6%, respectively, by 24 months. Mean percentage change in concomitant ASM drug load, not including cenobamate, was reduced in the overall efficacy population (31.8%) and older patients (36.3%) after 24 months of treatment. CONCLUSIONS: Results from this post hoc analysis showed notable rates of efficacy in older patients taking adjunctive cenobamate. Rates of several individual TEAEs occurred more frequently in older patients. Further reductions in concomitant ASMs may be needed in older patients when starting cenobamate to avoid adverse effects such as somnolence, dizziness, and falls. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov NCT02535091.


Assuntos
Anticonvulsivantes , Carbamatos , Clorofenóis , Tontura , Tetrazóis , Humanos , Feminino , Idoso , Masculino , Anticonvulsivantes/efeitos adversos , Tontura/induzido quimicamente , Tontura/tratamento farmacológico , Sonolência , Resultado do Tratamento , Quimioterapia Combinada , Método Duplo-Cego , Convulsões/tratamento farmacológico
15.
Chirality ; 36(4): e23660, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511944

RESUMO

A green and efficient process for the synthesis of cenobamate has been accomplished in 70% yield and >99% ee through the bio-reduction of ß-ketotetrazole using Daucus carota whole plant cells. The corresponding ß-hydroxytetrazole was isolated in 60% yield and >98% ee. This is the first report on the biocatalytic reduction of ß-ketotetrazole using plant enzymes derived from D. carota root cells with excellent enantioselectivity.


Assuntos
Anticonvulsivantes , Carbamatos , Clorofenóis , Cetonas , Tetrazóis , Estereoisomerismo , Biocatálise
16.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474222

RESUMO

High mobility group box 1 (HMGB1), a protein with important functions, has been recognized as a potential therapeutic target for the treatment of sepsis. One possible mechanism for this is that inhibiting HMGB1 secretion can exert antiseptic effects, which can restore the integrity of the vascular barrier. (7S)-(+)-cyclopentyl carbamic acid 8,8-dimethyl-2-oxo-6,7-dihydro-2H,8H-pyrano[3,2-g]chromen-7-yl-ester (CGK012) is a newly synthesized pyranocoumarin compound that could function as a novel small-molecule inhibitor of the Wnt/ß-catenin signaling pathway. However, no studies have yet determined the effects of CGK012 on sepsis. We investigated the potential of CGK012 to attenuate the excessive permeability induced by HMGB1 and enhance survival rates in a mouse model of sepsis with reduced HMGB1 levels following lipopolysaccharide (LPS) treatment. In both LPS-stimulated human endothelial cells and a mouse model exhibiting septic symptoms due to cecal ligation and puncture (CLP), we assessed proinflammatory protein levels and tissue damage biomarkers as indicators of reduced vascular permeability. CGK012 was applied after induction in human endothelial cells exposed to LPS and the CLP-induced mouse model of sepsis. CGK012 effectively mitigated excessive permeability and suppressed HMGB1 release, resulting in improved vascular stability, decreased mortality, and enhanced histological conditions in the mouse model of CLP-induced sepsis. In conclusion, our findings indicate that CGK012 treatment in mice with CLP-induced sepsis diminished HMGB1 release and increased the survival rate, suggesting its potential as a pharmaceutical intervention for sepsis.


Assuntos
Anti-Infecciosos Locais , Carbamatos , Cumarínicos , Proteína HMGB1 , Sepse , Animais , Humanos , Camundongos , Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos Locais/uso terapêutico , Modelos Animais de Doenças , Proteína HMGB1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Sepse/metabolismo
17.
PLoS One ; 19(3): e0301056, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536830

RESUMO

INTRODUCTION: Patients with diabetes mellitus type 2 and chronic kidney disease (T2DM-CKD) have a 5 times higher risk of developing severe SARS-CoV-2 infection than those without these 2 diseases. The goal of this study is to provide information on T2DM-CKD and COVID-19 outcomes, with an emphasis on the association with anti-diabetic medications. METHODOLOGY: Study is designed as a retrospective cohort analysis covering the years 2020 and 2021. Data from the National Diabetes Registry (CroDiab) were linked to hospital data, primary healthcare data, Causes of Death Registry data, the SARS-CoV-2 vaccination database, and the SARS-CoV-2 test results database. Study outcomes were cumulative incidence of SARS-CoV-2 positivity, COVID-19 hospitalizations, and COVID-19 deaths. For outcome predictors, logistic regression models were developed. RESULTS: Of 231 796 patients with diabetes mellitus type 2 in the database, 7 539 were T2DM-CKD (3.25%). The 2-year cumulative incidences of all three studies' outcomes were higher in T2DM-CKD than in diabetes patients without CKD (positivity 18.1% vs. 14.4%; hospitalization 9.7% vs. 4.2%; death 3.3% vs. 1.1%, all p<0.001). For COVID-19 hospitalization, protective factors were SGLT-2 inhibitors use (OR 0.430; 95%CI 0.257-0.719) and metformin use (OR 0.769; 95% CI 0.643-0.920), risk factors were insulin use (1.411; 95%CI 1.167-1.706) and sulfonylureas use (OR 1.226; 95% CI 1.027-1.464). For SARS-CoV-2 positivity protective factors were SGLT-2 inhibitors (0.607; 95% CI 0.448-0.823), repaglinide use (OR 0.765; 95% CI 0.593-0.986) and metformin use (OR 0.857; 95% CI 0.770-0.994). DPP-4 inhibitors showed a non-significant decrease in risk for COVID-19 death (OR 0.761; 95% CI 0.568-1.019). CONCLUSION: T2DM-CKD are heavily burdened by COVID-19 disease. Our results suggest no association between antidiabetic drugs and COVID-19 death outcome while SGLT-2 and metformin show to be protective against COVID-19 hospitalization and infection, repaglinide against infection, and insulin and sulfonylureas show to be risk factors for COVID-19 hospitalization and infection. Further research in T2DM-CKD is needed.


Assuntos
COVID-19 , Carbamatos , Diabetes Mellitus Tipo 2 , Metformina , Piperidinas , Insuficiência Renal Crônica , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Estudos Retrospectivos , COVID-19/epidemiologia , COVID-19/complicações , Vacinas contra COVID-19/uso terapêutico , SARS-CoV-2 , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/tratamento farmacológico , Compostos de Sulfonilureia/uso terapêutico , Insulina/uso terapêutico
18.
Biomed Pharmacother ; 173: 116369, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452657

RESUMO

Anandamide (AEA) is an important modulator of nociception in the spinal dorsal horn, acting presynaptically through Cannabinoid (CB1) and Transient receptor potential vanilloid (TRPV1) receptors. The role of AEA (1 µM, 10 µM, and 30 µM) application on the modulation of nociceptive synaptic transmission under control and inflammatory conditions was studied by recording miniature excitatory postsynaptic currents (mEPSCs) from neurons in spinal cord slices. Inhibition of the CB1 receptors by PF514273, TRPV1 by SB366791, and the fatty acid amide hydrolase (FAAH) by URB597 was used. Under naïve conditions, the AEA application did not affect the mEPSCs frequency (1.43±0.12 Hz) when all the recorded neurons were considered. The mEPSC frequency increased (180.0±39.2%) only when AEA (30 µM) was applied with PF514273 and URB597. Analysis showed that one sub-population of neurons had synaptic input inhibited (39.1% of neurons), the second excited (43.5%), whereas 8.7% showed a mixed effect and 8.7% did not respond to the AEA. With inflammation, the AEA effect was highly inhibitory (72.7%), while the excitation was negligible (9.1%), and 18.2% were not modulated. After inflammation, more neurons (45.0%) responded even to low AEA by mEPSC frequency increase with PF514273/URB597 present. AEA-induced dual (excitatory/inhibitory) effects at the 1st nociceptive synapse should be considered when developing analgesics targeting the endocannabinoid system. These findings contrast the clear inhibitory effects of the AEA precursor 20:4-NAPE application described previously and suggest that modulation of endogenous AEA production may be more favorable for analgesic treatments.


Assuntos
Ácidos Araquidônicos , Benzamidas , Carbamatos , Endocanabinoides , Nociceptividade , Humanos , Endocanabinoides/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Corno Dorsal da Medula Espinal , Analgésicos/farmacologia , Inflamação/tratamento farmacológico , Amidoidrolases
19.
Arch Toxicol ; 98(5): 1457-1467, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492097

RESUMO

Cytochrome P450 (P450)-mediated bioactivation, which can lead to the hepatotoxicity through the formation of reactive metabolites (RMs), has been regarded as the major problem of drug failures. Herein, we purposed to establish machine learning models to predict the bioactivation of P450. On the basis of the literature-derived bioactivation dataset, models for Benzene ring, Nitrogen heterocycle and Sulfur heterocycle were developed with machine learning methods, i.e., Random Forest, Random Subspace, SVM and Naïve Bayes. The models were assessed by metrics like "Precision", "Recall", "F-Measure", "AUC" (Area Under the Curve), etc. Random Forest algorithms illustrated the best predictability, with nice AUC values of 0.949, 0.973 and 0.958 for the test sets of Benzene ring, Nitrogen heterocycle and Sulfur heterocycle models, respectively. 2D descriptors like topological indices, 2D autocorrelations and Burden eigenvalues, etc. contributed most to the models. Furthermore, the models were applied to predict the occurrence of bioactivation of an external verification set. Drugs like selpercatinib, glafenine, encorafenib, etc. were predicted to undergo bioactivation into toxic RMs. In vitro, IC50 shift experiment was performed to assess the potential of bioactivation to validate the prediction. Encorafenib and tirbanibulin were observed of bioactivation potential with shifts of 3-6 folds or so. Overall, this study provided a reliable and robust strategy to predict the P450-mediated bioactivation, which will be helpful to the assessment of adverse drug reactions (ADRs) in clinic and the design of new candidates with lower toxicities.


Assuntos
Benzeno , Carbamatos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Sulfonamidas , Humanos , Teorema de Bayes , Sistema Enzimático do Citocromo P-450/metabolismo , Aprendizado de Máquina , Enxofre , Nitrogênio
20.
Psychopharmacol Bull ; 54(1): 65-86, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38449471

RESUMO

Purpose of Review: This is a comprehensive review of the literature regarding the use of Solriamfetol for excessive daytime sleepiness. It covers the background and current therapeutic approaches to treating excessive daytime sleepiness, the management of common comorbidities, and the existing evidence investigating the use of Solriamfetol for this purpose. Recent Findings: Excessive daytime sleepiness leads to worse quality of life, a medical sequela and significant economic cost. There are multiple phenotypes of excessive daytime sleepiness depending on the comorbidity making treatment challenging. Due to the complexity of etiology there is not a cure for this ailment. Solriamfetol is a norepinephrine/dopamine dual reuptake antagonist that can be used to manage daytime sleepiness. Solriamfetol was first approved by the FDA in 2018 for use in excessive daytime sleepiness associated with obstructive sleep apnea and narcolepsy. Ongoing literature has proved this drug to be a safe and effective alternative pharmacotherapy. Summary: Recent epidemiological data estimate up to one-third of the general adult population suffers from excessive daytime sleepiness. There is no cure to daytime somnolence and current pharmacotherapeutic regimens have worrisome side effect profiles. Solriamfetol is a new class of drug that offers a safe and effective alternative option for clinical providers treating excessive daytime sleepiness.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Fenilalanina/análogos & derivados , Qualidade de Vida , Adulto , Humanos , Carbamatos/uso terapêutico , Antagonistas de Dopamina , Distúrbios do Sono por Sonolência Excessiva/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...